CRITERIA FOR THE DETERMINATION OF THE
"LIMITS'™ OF CONTINUOUS FLOW IN A
FREELY EXPANDING JET

A. L. Stasenko UDC 533.70

We propose a criterion to evaluate the position of the "boundary" of a continuous medium in
steady -state jets discharging into a vacuum. For a case of a spherical source the results
obtained on the basis of this criterion are compared with the results obtained in a numerical
solution of a model Boltzmann equation and through experimentation.

In calculating a freely expanding jet based on the model of a continuous medium it is necessary to
determine when this model ceases to be valid and when we begin dealing with the flow of a rarefied gas.
The answer to this question cannot be obtained with the Knudsen number, since in such a jet there is no
control body nor a characteristic macroscopic dimension. Therefore, in determining the "boundary" of
transition from a continuous medium to one that is expanded, we must resort to a kinetic equation or to
certain criteria containing the local characteristics of the jet.

Until recently, the transition of a continuous medium into an expanding medium had been investigated
only for symmetrical flows proceeding from spherical or cylindrical sonic sources of a gas. The basic
research tool was the Bhatnagar —Gross —Krook (BGK) model [1] of the kinetic Boltzmann equation, written
in an appropriate coordinate system. Relying on the BGK method in the formulation of reference [2], the
authors of reference [3] found a sharp transition from continuous flow to the flow with a "frozen-in" tem-
perature Tew > 0.

An experimental study is described in reference [4] for the process of the kinetic freezing-in of argon
flow (% = 5/3) and the relationship between the limit Mach number and the characteristic Knudsen number,
Kng = Ly/v* =7, has been determined, the latter calculated with respect to the mean free path in the de-
celerated gas and from the source radius r,:

M. = 1.37Kny . (1)

The kinetic BGK model was also used in {5], but with consideration given to the terms omitted in [3].
Two conclusions were drawn here, and these differ from those drawn in [3]: 1) in the spherical case the
transition to the frozen-in temperature T« proceeds rather smoothly as (I/Tew) —1 ~r~'; 2) in the cylin-
drical case the freezing-in of the temperature does not occur, regardless of the conditions.

In [6], in the case of spherical expansion, the problem reduces to a relaxation process with two trans-
lation temperatures along (T ||) and across (T, ) the streamlines, corresponding to an ellipsoidal distri-
bution function [7].

The process is a function of the Knudsen number and of the law governing the interaction between
the molecules. The results of the calculations show that the region of transition is rather broad. Its "mid-
dle" is determined from the condition T|| —T, =T, which corresponds to the radius
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For argon (3 =1/2, % = 5/3) the finite Mach number is equal to
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M. = 0,9Kng"* (3

o Moreover, as in [5], it develops that in the cylindrical
case none of the temperature components is frozen in.

A more detailed summary of the above-enumerated

vir+) papers has recently been undertaken in [8].

2. Below we describe the proposed criterion (the

‘\ [ —c criterion).

w Let us examine an arbitrary steady-state expand-
ing gas flow. Let the problem of the motion of this gas be
solved in terms of a continuous medium and let us as-
sume that we have determined the macroscopic velocity

aA V{(r), the density p(r), and the temperature T(r) at each
point r of the space; consequently, for each point we
& know the mean free path I(r) and the absolute value of the
e r mean velocity of random motion (c(r)) . We have to find

the "boundary” I" of the region for which the continuous-
medium model is valid.

>’>’

Fig. 1. Diagram showing the phenomena in
the coordinate and velocity space (above) and Each molecule in the gas flow participates in two
in the case of a spherical source (below). motions: the transport motion with the macroscopic
velocity V(r) of the continuous medium and the relative
motion with the thermal velocity e¢(r). The former varies
continuously from point to point, while the latter remains constant over the mean free path I(r). Let us take
some point r in the coordinate space (Fig. la) and surround it by a sphere of radius I(r) (the I sphere).
From the center of this sphere we draw the radius vector I(r, 9, ), where 6 and ¢ are the angles of the
spherical coordinate system whose center is at r. The macroscopic velocity at a chosen point on the sur-
face of this sphere will be equal to Vir + 1(r, 0, )] and it will be a function of both 6 and y. Let us turn to
the velocity space and, in this space, let us construct a sphere with the radius (c(r)) (the ¢ sphere). From
its center we draw the vector

AV(r, 8, P)=V(r+1)—V().
With a continuous change in 4 and § the end of this vector in the velocity space will describe a certain AV
surface. The proposed criterion involves the following: the continuous medium ceases to exist if the AV

surface is tangential to the ¢ sphere:
sup| AV(r, 8, ¥)] = (c(r) . (4

The set of points ry forms the I" surface.

If I <rr, the finite difference in the left-hand member of (4) can be expressed in terms of the deriv-
ative of the vector V with respect to the vector 1

max (I, V) vl = C(rr) >

To test how the proposed criterion "functions," let us take comparatively simple symmetrical gas
flows from a sphere and cylinder. We will assume the gas to be nonviscous and nonheat~-conducting, with
a constant heat-capacity ratio. (It can be demonstrated that rp < r?, where r? is the radius at which vis-
cous forces become evident [9].) In this case the flow parameters are expressed in terms of the familiar
gasdynamic functions
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(v = 1 for a cylinder and v = 2 for a sphere), while expression (4) assumes the form (/1,= p,/p):
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Fig. 2. Comparison of the "frozen-in" Mach number as a function
of the Knudsen number for a spherical source: 1) experiment [4],
formula (1); 2) proposed criterion, formula (8"; 3) calculation with
the model Boltzman equation [6], formula (3).

Fig. 3. Radius of "transition" and the corresponding mean free
path as a function of the density within the spherical source.

To avoid complicating the matter with excessive computation, we will adopt the following as-~
sumptions: 1) the sought boundary of transition is sufficiently removed, i.e., rp > 1; 2) at the boundary
of transition the mean free path I < rr (in the following, these conditions will be verified). In this case

1
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Since A = const, the maximum value for the difference BN e +iIp — Mrr)l can be achieved only in

a direction approximately perpendicular to the streamline (Fig. 1b). From the similarity of the triangles
constructed on r and A, we have

o b
A I'n
From (5) and (8) we obtain
G (] o (x \E
o= L, (7)
(> \ 2 -1

Let us compare this result with the transition radius of (2) for monatomic stable molecules (® = 5/ 3,
8 =1/2). We have

ry=0.225Kng™* , 2"

re = 0,333, (T

Considering that Kny = [ (since all linear dimensions are referred to rx), we see that the shape of the
function r1(Kng) and the order of magnitude are properly described by the [ —c criterion.

Let us also carry out this comparison in terms of the function My (Kny). Since for r > 1 we have
the relationship

w1

M2~ %+ 1\ o)
n— 1
from (7) we find
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For n = 5/ 3 we have
My — 1.21Kn; 04, 8"

which is a result that is in very good agreement with expressions (1) and (3). For clarity, each of the three
functions has been plotted in Fig. 2.

Thus comparing the conclusion drawn with the aid of the proposed criterion with the results of the so-
lutions for the Boltzmann equation and the experimental results for spherical flow demonstrates their satis-
factory agreement, despite the intrinsic contradiction of the criterion (the existence of a continucus medium
at the point rp isinitiallyassumed, and then rejected). This enables us to believe that the ! —c criterion of
(4) is applicable to the general case, since it is free of any assumptions with regard to the geometry of the
flow.

Figure 3 shows r1 and Iy /rr as a function of ny/ny, for a gas of monatomic stable molecules. The
conditions rp > 1 and I/ rI" < 1 (assumed only to simplify the calculations and to have no bearing on the
essential nature of the [ —c criterion) have been satisfied here.

For the case of a cylindrical source, expressions similar to (7) and (8) are of the form

1 %43 ___ _t -
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The 7 —c criterion thus indicates the existence of a transition "surface," which is in agreement with

[3] and contradicts the conclusions of [5] and [6]. However, since all of the above -cited references are
based on the approximate BGK model of the Boltzmann equation, the question of the existence or absence
of such a "surface" in the eylindrical case remains open, a fact which is enhanced by the conditional nature
of the concept itself.

The author expresses his gratitude to V. N. Zhigulev, F. A. Kukanov, and E. A. Romishevskii for
their useful discussions.

NOTATION
V,c are, respectively, the macroscopic and thermal velocities of the gas molecules;
<e>, L are, respectively, the average thermal velocity and mean free path;
p,n, T are, respectively, the mass and numerical densities and the absolute temperature of

the gas;

Tr is the radius vector;

A=V/ax,M=V/q are the reduced velocity and the Mach number;

a is the speed of sound;

g is the ratio of heat capacities;

B is the exponent in the function of molecular interaction (for stable molecules g =1/2,
and for Maxwellian molecules 8 = 0);

Kn is the Knudsen number;

np, = 2.69-10°m™3  is the Lohschmidt number.

Subscripts

0 denotes the stagnation conditions;
*  denotes the parameters on the sonic line;
I'  denotes the parameters at the "transition surface."

All linear dimensions are referred to the source radius ry, I = L/ rx.
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